Add like
Add dislike
Add to saved papers

Accuracy of Substrate Selection by Enzymes Is Controlled by Kinetic Discrimination.

Enzymes have the remarkable ability to select the correct substrate from the pool of chemically similar molecules. The accuracy of such a selection is determined by differences in the free-energy profiles for the right and wrong reaction pathways. Here, we investigate which features of the free-energy landscape govern the variation and minimization of selectivity error. It is generally believed that minimal error is affected by both kinetic (activation barrier heights) and thermodynamic (binding stability) factors. In contrast, using first-passage theoretical analysis, we show that the steady-state selectivity error is determined only by the differences in transition-state energies between the pathways and is independent of the energies of the stable complexes. The results are illustrated for two common catalytic mechanisms: (i) the Michaelis-Menten scheme and (ii) an error-correcting kinetic proofreading scheme with tRNA selection and DNA replication as guiding biological examples. Our theoretical analysis therefore suggests that the selectivity mechanisms are always kinetically controlled.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app