Add like
Add dislike
Add to saved papers

Synthesis of naproxen-imprinted polymer using Pickering emulsion polymerization.

For the last decades, molecular imprinting is developing intensively, especially in the case of the application of new imprinting techniques. In this work, for the first time, a Pickering emulsion polymerization was used to synthesize the S-naproxen-imprinted polymer spheres following a noncovalent protocol. To enhance the knowledge about imprinting process using mentioned technique, thorough analysis of the synthesis process was performed. Optimization of polymerization conditions included the selection of functional monomer, cross-linking agent, type of porogen, surfactant, and the choice of appropriate amount of the template and porogen. Prepared materials were characterized using scanning electron microscopy and nitrogen adsorption. To study the binding properties, the sorption studies, including adsorption isotherms and competitive binding, were performed. Investigation of the effect of the functional monomer on the selective recognition of S-naproxen showed that the interactions between the template molecule and 4-vinylpyridine resulted in the best recognizing ability. Moreover, the synthesis with application of ethylene glycol dimethacrylae as a cross-linker, toluene as a porogen, and Tween 20 as an additional emulsion stabilizer gave the most desired result. The optimal ratio of the porogen to monomers mixture was 0.1, due to the fact that the increase of the porogen volume resulted in the significant increase of nonspecific uptake. In addition, the tenfold molar excess of functional monomer relative to the template turned out to be optimal. Subsequent binding studies demonstrated that the material synthesized using optimized polymerization conditions consists of imprinted sites that are sensitive for the S-naproxen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app