JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Role of miR-497/EIF3A Axis in TGFβ1-Induced Epithelial-Mesenchymal Transition and Extracellular Matrix in Rat Alveolar Epithelial Cells and Pulmonary Fibroblasts.

Multi-cause-induced interstitial lung disease, particularly pulmonary fibrosis, is a serious clinical concern. Fibroblasts have been suggested to have a major role, with it recently being revealed that some of these fibroblasts are derived from alveolar epithelial cells through epithelial-mesenchymal transition (EMT). Eukaryotic translation initiation factor 3 subunit A (EIF3A) is a protein that in humans is encoded by the EIF3A gene, and has been suggested to play roles in regulating translation of a subset of mRNAs and in regulating cell cycle progression and cell proliferation. In the present study, we chose a well-known TGFβ1-induced EMT model in alveolar epithelial cells to investigate the functional role of EIF3A. TGFβ1-induced EIF3A expression and EMT process in alveolar epithelial cells, after EIF3A knockdown, the EMT process could be partially reversed. Online tools and luciferase assays showed that miR-497 could inhibit EIF3A expression by directly binding to the 3'UTR of EIF3A. Ectopic miR-497 expression partially reversed TGFβ1-induced EMT in alveolar epithelial cells. In addition, miR-497 could suppress TGFβ1-induced pulmonary fibroblast proliferation and EIF3A, Collagen I and α-SMA protein levels. Taken together, EIF3A could promote TGFβ1-induced EMT in alveolar epithelial cells; miR-497 suppressed TGFβ1-induced EMT in alveolar epithelial cells TGFβ1-induced excessive proliferation and ECM in pulmonary fibroblast through inhibiting EIF3A by targeting. MiR-497/EIF3A axis shows the potential to be effective in the treatment of pulmonary fibrosis. J. Cell. Biochem. 118: 3401-3408, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app