JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exposure of pregnant mice to triclosan impairs placental development and nutrient transport.

Scientific Reports 2017 March 22
Triclosan (TCS) is associated with spontaneous abortions and fetal growth restriction. Here, we showed that when pregnant mice were treated with 8 mg/kg TCS (8-TCS mice) on gestational days (GD) 6-18 fetal body weights were lower than controls. Placental weights and volumes were reduced in 8-TCS mice. The placental proliferative cells and expression of PCNA and Cyclin D3 on GD13 were remarkably decreased in 8-TCS mice. The decreases in activities and expression of placental System A amino acid or glucose transporters on GD14 and GD17 were observed in 8-TCS mice. Levels of serum thyroxine (T4) and triiodothyronine (T3) were lower in 8-TCS mice than those in controls. Declines of placental Akt, mTOR and P70S6K phosphorylation in 8-TCS mice were corrected by L-thyroxinein (T4). Treating 8-TCS mice with T4 rescued the placental cell proliferation and recovered the activity and expression of amino acid and glucose transporters, which were sensitive to mTOR inhibition by rapamycin. Furthermore, the replacement of T4 could rescue the decrease in fetal body weight, which was blocked by rapamycin. These findings indicate that TCS-induced hypothyroxinemia in gestation mice through reducing Akt-mTOR signaling may impair placental development and nutrient transfer leading to decreases in fetal body weight.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app