Add like
Add dislike
Add to saved papers

Genetic epistasis regulates amyloid deposition in resilient aging.

INTRODUCTION: The brain-derived neurotrophic factor (BDNF) interacts with important genetic Alzheimer's disease (AD) risk factors. Specifically, variants within the SORL1 gene determine BDNF's ability to reduce amyloid β (Aβ) in vitro. We sought to test whether functional BDNF variation interacts with SORL1 genotypes to influence expression and downstream AD-related processes in humans.

METHODS: We analyzed postmortem brain RNA sequencing and neuropathological data for 441 subjects from the Religious Orders Study/Memory and Aging Project and molecular and structural neuroimaging data for 1285 subjects from the Alzheimer's Disease Neuroimaging Initiative.

RESULTS: We found one SORL1 RNA transcript strongly regulated by SORL1-BDNF interactions in elderly without pathological AD and showing stronger associations with diffuse than neuritic Aβ plaques. The same SORL1-BDNF interactions also significantly influenced Aβ load as measured with [18 F]Florbetapir positron emission tomography.

DISCUSSION: Our results bridge the gap between risk and resilience factors for AD, demonstrating interdependent roles of established SORL1 and BDNF functional genotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app