Add like
Add dislike
Add to saved papers

Surface modulation of polymeric nanocarriers enhances the stability and delivery of proteins and small molecules.

Nanomedicine 2017 April
AIM: We aimed to enhance the stability and therapeutic efficiency of protein-based therapeutic formulations.

MATERIALS & METHODS: Proteins were immobilized on the surface of nanoparticles (NPs) to improve both protein stability and protein function, especially enzymatic activity. The modularity of the platform was demonstrated by coating proteins of varied molecular weights and functionalities on the surface of poly(lactic-co-glycolic acid)-based NPs.

RESULTS: Coating proteins to the particle surface greatly enhanced the stability of the NPs, preventing particle aggregation and improving enzymatic potency, including in vivo. Specifically, coating of collagenase I to the particle surface greatly improved the ability of the enzyme to degrade tumor collagen relative to free enzyme, thereby increasing the penetration of adjuvant chemotherapy (doxorubicin). Additionally, the protein coating reduced the rate of doxorubicin release, enabling sustained release of the small-molecule payload.

CONCLUSION: The straightforward procedure described herein permits the formulation of modular NPs that can combine and sustain the benefits of small molecules and biologics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app