Add like
Add dislike
Add to saved papers

Dose-finding methods for Phase I clinical trials using pharmacokinetics in small populations.

The aim of phase I clinical trials is to obtain reliable information on safety, tolerability, pharmacokinetics (PK), and mechanism of action of drugs with the objective of determining the maximum tolerated dose (MTD). In most phase I studies, dose-finding and PK analysis are done separately and no attempt is made to combine them during dose allocation. In cases such as rare diseases, paediatrics, and studies in a biomarker-defined subgroup of a defined population, the available population size will limit the number of possible clinical trials that can be conducted. Combining dose-finding and PK analyses to allow better estimation of the dose-toxicity curve should then be considered. In this work, we propose, study, and compare methods to incorporate PK measures in the dose allocation process during a phase I clinical trial. These methods do this in different ways, including using PK observations as a covariate, as the dependent variable or in a hierarchical model. We conducted a large simulation study that showed that adding PK measurements as a covariate only does not improve the efficiency of dose-finding trials either in terms of the number of observed dose limiting toxicities or the probability of correct dose selection. However, incorporating PK measures does allow better estimation of the dose-toxicity curve while maintaining the performance in terms of MTD selection compared to dose-finding designs that do not incorporate PK information. In conclusion, using PK information in the dose allocation process enriches the knowledge of the dose-toxicity relationship, facilitating better dose recommendation for subsequent trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app