JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth.

Autophagy is a bulk degradation process conserved from yeast to mammals. To examine the roles of autophagy in cellular metabolism, we generated autophagy-defective ( atg ) mutants in the X2180-1B strain background. We compared the growth of wild-type (WT) and atg cells in minimal (synthetic dextrose, SD) and rich (yeast extract/peptone/dextrose, YEPD) medium, and we found that mutations in the core autophagy machinery result in defects in the diauxic shift, the transition from fermentation to respiratory growth upon glucose depletion, specifically in SD. Furthermore, we confirmed that autophagy was induced prior to the diauxic shift, implying that it plays a role in this process. In YEPD, atg mutants grew normally, so we assumed that the insufficiency of certain nutrients in SD was responsible for the defects. We ultimately identified iron, which is a necessary cofactor for respiratory activity, as the nutrient required for the diauxic shift in atg mutants. Indeed, atg mutants exhibited defects in respiration, which was rescued by supplementation with iron. Based on these data, we hypothesized that autophagy is involved in iron recycling during the diauxic shift. smf3 Δ fet5 Δ or smf3 Δ ftr1 Δ cells, which are unable to export iron from the vacuole, also exhibit defects in the diauxic shift, so iron released from the vacuole is important for the shift in SD medium. Finally, we observed that smf3 Δ fet5 Δ cells accumulated nearly twice as much vacuolar iron as smf3 Δ fet5 Δ atg2 Δ cells, suggesting that autophagy is involved in iron recycling by the vacuolar transport and degradation of iron-containing cargos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app