Add like
Add dislike
Add to saved papers

Monocytes/Macrophages Mobilization Orchestrate Neovascularization after Localized Colorectal Irradiation.

In patients undergoing radiotherapy for cancer, radiation dose to healthy tissue can occur, causing microvascular damage. Monocytes that have been shown to promote tissue revascularization comprise the subsets: CD11b+ Ly6G- 7/4hi /monocyteshi and CD11b+ Ly6G- 7/4lo /monocyteslo . We hypothesized that monocytes were implicated in postirradiation blood vessel formation. C57Bl6 mice underwent localized colorectal irradiation and were sacrificed at different times after exposure. Bone marrow, spleen, blood and colon were collected. Fourteen days postirradiation, colons expressed proangiogenic actors and adhesion molecules. Monocyteshi , which were the main subset of infiltrating monocytes, mobilized to the blood from spleen and bone marrow, peaking at day 14 postirradiation, and were associated with lymphocyte Th1 polarization. At day 28 postirradiation, angiographic score and capillary density increased by ∼1.8-fold, and then returned to nonirradiated levels at day 60. Clodronate-mediated depletion of circulating monocytes prior to irradiation resulted in a ∼1.4-fold decrease in angiographic score and capillary density compared to the nontreated control. Histological analysis of the colon in clodronate-treated mice revealed a massive decrease of macrophage and lymphocyte infiltration as well as reduced collagen deposition in crypt area at day 21. However, late depletion of monocytes from day 25 postirradiation had no effect on fibrotic process. These findings demonstrate a central role for monocyte/macrophage activation in the orchestration of a neovascularization mechanism after localized colorectal irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app