Add like
Add dislike
Add to saved papers

Criegee Chemistry on Aqueous Organic Surfaces.

In the troposphere, the fate of gas-phase Criegee intermediates (CIs) is deemed to be determined by their reactions with water molecules. Here it is shown that CIs produced in situ on the surface of water/acetonitrile (W/AN) solutions react competitively with millimolar carboxylic acids. Present experiments probe, via online electrospray mass spectrometry, CIs' chemistry on the surface of α-humulene and β-caryophyllene in W/AN microjets exposed to O3 (g) for <10 μs. Mass-specific identification lets us establish the progeny of products and intermediates generated in the early stages of CIs' reactions with H2 O, D2 O, H2 18 O, and n-alkyl-COOH (n = 1-7). It is found that n-alkyl-COOH competes for CIs with interfacial water, their competitiveness being an increasing function of n. Present findings demonstrate that CIs can react with species other than H2 O on the surface of aqueous organic aerosols due to the low water concentrations prevalent in the outermost interfacial layers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app