Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation.

Carbon nitride (g-C3 N4 ) as a benchmark polymer photocatalyst is attracting significant research interest because of its visible light photocatalytic performance combined with good stability and facile synthesis. However, little is known about the fundamental photophysical processes of g-C3 N4 , which are key to explain and promote photoactivity. Using time-resolved absorption and photoluminescence spectroscopies, we have investigated the photophysics of a series of carbon nitrides on time scales ranging from femtoseconds to seconds. Free charge carriers form within a 200 fs excitation pulse, trap on the picosecond time scale with trap states in a range of energies, and then recombine with power law decays that are indicative of charge trapping-detrapping processes. Delayed photoluminescence is assigned to thermal excitation of trapped carriers back up to the conduction/valence bands. We develop a simple, quantitative model for the charge carrier dynamics in these photocatalysts, which includes carrier relaxation into an exponential tail of trap states extending up to 1.5 eV into the bandgap. This trapping reduces the efficiency of surface photocatalytic reactions. Deep trapped electrons observed on micro- to millisecond time scales are unable to reduce electron acceptors on the surface or in solution. Within a series of g-C3 N4 , the yield of these unreactive trapped electrons correlates inversely with H2 evolution rates. We conclude by arguing that the photophysics of these carbon nitride materials show closer parallels with inorganic semiconductors than conjugated polymers, and that the key challenge to optimize photocatalytic activity of these materials is to prevent electron trapping into deep, and photocatalytically inactive, electron trap states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app