Add like
Add dislike
Add to saved papers

Physiologic Reduction of Hepatic Venous Blood Flow by the Valsalva Maneuver Decreases Liver Stiffness.

OBJECTIVES: Liver stiffness increases after intake of food or water, suggesting that hepatic venous blood flow affects the results of elastographic measurements. This study investigated the correlation between in vivo liver stiffness and hepatic blood flow using the Valsalva maneuver for reducing intrahepatic venous blood flow.

METHODS: Intrahepatic changes in venous blood flow were assessed by sonography based on the pulsed wave Doppler velocity, vessel diameter assessment, and blood flow volume measurements in the portal vein and right hepatic vein. Time-harmonic elastography at 7 harmonic driving frequencies (30-60 Hz) was used to measure liver stiffness in the right liver lobe of 15 healthy volunteers.

RESULTS: The right hepatic vein diameter, flow volume, and peak pulsed wave velocity decreased during the Valsalva maneuver from mean ± SD values of 8.64 ± 1.85 to 6.55 ± 1.84 mm (P = .002), 0.53 ± 0.23 to 0.37 ± 0.26 L/min (P = .037), and 22.14 ± 4.87 to 17.38 ± 5.41 cm/s (P = .01), respectively. This maneuver decreased liver stiffness in all volunteers by a mean of approximately 13% from 1.71 ± 0.22 to 1.48 ± 0.22 m/s (P = .00006).

CONCLUSIONS: Our results demonstrate that liver stiffness is sensitive to altered venous blood flow, which is of clinical importance when using elastography for evaluation of portal hypertension. Furthermore, our results indicate that accurate measurement of liver stiffness requires standardized breathing conditions to rule out effects of changes in hepatic blood flow on elastographic findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app