Add like
Add dislike
Add to saved papers

Simultaneous induction of Graves' hyperthyroidism and Graves' ophthalmopathy by TSHR genetic immunization in BALB/c mice.

BACKGROUND: Graves' disease is the most common form of autoimmune thyroid disorder, characterized by hyperthyroidism due to circulating autoantibodies. To address the pathological features and establish a therapeutic approach of this disease, an animal model carrying the phenotype of Graves' disease (GD) in concert with Graves' Ophthalmopathy (GO) will be very important. However, there are no ideal animal models that are currently available. The aim of the present study is to establish an animal model of GD and GO disease, and its pathological features were further characterized.

METHODS: A recombinant plasmid pcDNA3.1- T289 was constructed by inserting the TSHR A-subunit gene into the expression vector pcDNA3.1, and genetic immunization was successfully performed by intramuscular injection of the plasmid pcDNA3.1-T289 on female 8-week-old BALB/c mice. Each injection was immediately followed by in vivo electroporation using ECM830 square wave electroporator. Morphological changes of the eyes were examined using 7.0T MRI scanner. Levels of serum T4 and TSHR antibodies (TRAb) were assessed by ELISA. The pathological changes of the thyroid and orbital tissues were examined by histological staining such as H&E staining and Alcian blue staining.

RESULTS: More than 90% of the immunized mice spontaneously developed goiter, and about 80% of the immunized mice manifested increased serum T4 and TRAb levels, combined with hypertrophy and hyperplasia of thyroid follicles. A significantly increased synthesis of hyaluronic acid was detected in in the immunized mice compared with the control groups.

CONCLUSION: We have successfully established an animal model manifesting Graves' hyperthyroidism and ophthalmopathy, which provides a useful tool for future study of the pathological features and the development of novel therapies of the diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app