Add like
Add dislike
Add to saved papers

Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products.

Waste Management 2017 March 17
The general aim of this study is the recovery of Automotive Shredder Residue (ASR). The ASR light fraction, or car fluff, that was collected at an Italian shredding plant was pyrolysed at various temperatures (500-800°C) in a lab-scale reactor. The condensable gases (tar) and solid residue yields increased with decreasing temperature, and these products were characterized to suggest a potential use to reclaim them. The higher heating value (HHV) of tar was 34-37MJ/kg, which is comparable with those of fossil fuels. Furthermore, the ash content was low (0.06-4.98%). Thus, tar can be used as an alternative fuel. With this prospect, the concentrations of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in tar were determined. The toxicity of tar changes with temperature (1-5ng I-TEQ/g), and the PCDFs significantly contribute to tar toxicity, which was 75-100% with a maximum of 99.6% at 700°C. Regarding the characterization of the solid residue, the low HHV (2.4-3.3MJ/kg) does not make it suitable for energy recovery. Regarding material recovery, we considered its use as a filler in construction materials or a secondary source for metals. It shows a high metal concentration (280,000-395,000mg/kg), which is similar at different pyrolysis temperatures. At 500°C, polycyclic aromatic hydrocarbons (PAHs) were not detected in the solid residue, whereas the maximum total PAH concentration (19.41ng/g, 700°C) was lower than that in fly ash from MSWI. In conclusion, 500°C is a suitable pyrolysis temperature to obtain valuable tar and solid residue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app