Add like
Add dislike
Add to saved papers

UDP/P2Y6 receptor signaling regulates IgE-dependent degranulation in human basophils.

BACKGROUND: P2Y purinergic receptors (P2YR) are G protein-coupled receptors that are stimulated by extracellular nucleotides. They mediate cellular effects by regulating cAMP production, protein kinase C activation, inositol trisphosphate generation, and Ca2+ release from intracellular stores. The P2Y6 receptor of this family is selectively stimulated by UDP, and selectively inhibited by MRS2578. In the present study, we examined the effect of UDP/P2Y6 receptor signaling on IgE-dependent degranulation in human basophils.

METHODS: Basophils were purified from human peripheral blood. The mRNA expression of genes encoding P2YR and ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) was measured by RT-PCR. Intracellular Ca2+ influx via UDP/P2Y6 receptor signaling in basophils was detected using a calcium probe. The effect of UDP/P2Y6 receptor signaling on IgE-dependent degranulation in basophils was confirmed by measuring CD63 expression by flow cytometry. Autocrine secretion of nucleotides was detected by HPLC analysis.

RESULTS: We showed that purified basophils express P2Y6 mRNA and that UDP increased intracellular Ca2+ , which was reduced by MRS2578 treatment. UDP promoted IgE-dependent degranulation. Furthermore, MRS2578 inhibited IgE-dependent degranulation in basophils. HPLC analysis indicated that basophils spontaneously secrete UTP. In addition, basophils expressed the extracellular nucleotide hydrolases ENTPDase2, ENTPDase3, and ENTPDase8.

CONCLUSIONS: This study showed that UDP/P2Y6 receptor signaling is involved in the regulation of IgE-dependent degranulation in basophils, which might stimulate the P2Y6 receptor via the autocrine secretion of UTP. Thus, this receptor represents a potential target to regulate IgE-dependent degranulation in basophils during allergic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app