JOURNAL ARTICLE
MULTICENTER STUDY
Add like
Add dislike
Add to saved papers

Improving Risk Adjustment for Mortality After Pediatric Cardiac Surgery: The UK PRAiS2 Model.

BACKGROUND: Partial Risk Adjustment in Surgery (PRAiS), a risk model for 30-day mortality after children's heart surgery, has been used by the UK National Congenital Heart Disease Audit to report expected risk-adjusted survival since 2013. This study aimed to improve the model by incorporating additional comorbidity and diagnostic information.

METHODS: The model development dataset was all procedures performed between 2009 and 2014 in all UK and Ireland congenital cardiac centers. The outcome measure was death within each 30-day surgical episode. Model development followed an iterative process of clinical discussion and development and assessment of models using logistic regression under 25 × 5 cross-validation. Performance was measured using Akaike information criterion, the area under the receiver-operating characteristic curve (AUC), and calibration. The final model was assessed in an external 2014 to 2015 validation dataset.

RESULTS: The development dataset comprised 21,838 30-day surgical episodes, with 539 deaths (mortality, 2.5%). The validation dataset comprised 4,207 episodes, with 97 deaths (mortality, 2.3%). The updated risk model included 15 procedural, 11 diagnostic, and 4 comorbidity groupings, and nonlinear functions of age and weight. Performance under cross-validation was: median AUC of 0.83 (range, 0.82 to 0.83), median calibration slope and intercept of 0.92 (range, 0.64 to 1.25) and -0.23 (range, -1.08 to 0.85) respectively. In the validation dataset, the AUC was 0.86 (95% confidence interval [CI], 0.82 to 0.89), and the calibration slope and intercept were 1.01 (95% CI, 0.83 to 1.18) and 0.11 (95% CI, -0.45 to 0.67), respectively, showing excellent performance.

CONCLUSIONS: A more sophisticated PRAiS2 risk model for UK use was developed with additional comorbidity and diagnostic information, alongside age and weight as nonlinear variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app