Add like
Add dislike
Add to saved papers

Sequential role of biosorption and biodegradation in rapid removal degradation and utilization of methyl parathion as a phosphate source by a new cyanobacterial isolate Scytonema sp. BHUS-5.

A new isolate of genus Scytonema distinct from its closest relative cyanobacterium, Scytonema hofmanni was found efficient in the removal and degradation of organophosphorus (OP) pesticide, methyl parathion (MP). The cyanobacterial isolate was also capable of utilizing the phosphorus present in the MP following its degradation, which was evident from the increase in growth (chlorophyll content), biomass, protein content, and total phosphorus in comparison to cyanobacterium grown in phosphate-deficient cultures. The rapid removal of MP by the cyanobacterium during initial 6 hours of incubation was defined by the pseudo-second-order biosorption kinetics model, which indicated the involvement of chemosorption in initial removal of pesticide. Further, degradation of MP was also confirmed by the appearance of p-nitrophenol in the medium after 24 hours of incubation. Thus, the cyanobacterial isolate of Scytonema sp. BHUS-5 seems to be a potential bioremediation agent for the removal of OP pesticide, MP from the habitat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app