Add like
Add dislike
Add to saved papers

Comparison of fast electron transfer kinetics at platinum, gold, glassy carbon and diamond electrodes using Fourier-transformed AC voltammetry and scanning electrochemical microscopy.

Heterogeneous electron transfer (ET) processes at electrode/electrolyte interfaces are of fundamental and applied importance and are extensively studied by a range of electrochemical techniques, all of which have various attributes but also limitations. The present study focuses on the one-electron oxidation of tetrathiafulvalene (TTF) and reduction of tetracyanoquinodimethane (TCNQ) in acetonitrile solution by two powerful electrochemical techniques: Fourier-transformed large amplitude alternating current voltammetry (FTACV); and scanning electrochemical microscopy (SECM), both of which are supported by detailed theoretical models. At conventional Pt, Au and glassy carbon (GC) electrode materials, the apparent (overall) charge transfer kinetic values determined by FTACV give standard ET rate constants, k, that are fast and close to the reversible limit. They are in good agreement with highly localised k measurements determined by SECM under conditions of high mass transport rates. In contrast, the impact of both the complex heterogeneous surface of polycrystalline boron doped diamond (pBDD) and degenerate p-type doping results in a range of k values across the electrode surface compared to the overall k measured for both processes studied. Moreover, the reduced availability of charge carriers at the electrode surface, at each energy state, compared to a metal, which decreases as the potential becomes more negative, results in lower k0 values at pBDD than Pt, Au and GC. The measurement technique also has an influence: SECM measurements are made at much higher local current density than FTACV, and for TCNQ/TCNQ˙- , which has the more negative formal potential, limited charge carrier availability results in k > k, with unusual apparent charge transfer coefficients and voltammetric waveshapes from SECM. These data thus highlight the importance of understanding the influence of the measurement technique and further demonstrate how ET kinetics at pBDD differ from conventional electrodes, in this case for processes in an organic solvent, which has received much less attention compared to aqueous systems for studies with pBDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app