Add like
Add dislike
Add to saved papers

Facile synthesis of nanoporous Li 1+x V 1-x O 2 @C composites as promising anode materials for lithium-ion batteries.

Recently, a layered material with composition Li1+x V1-x O2 has been discovered as a promising alternative anode material to graphite due to its high volumetric capacity and low operation potential. Herein, we demonstrate a mild and cost-effective synthetic methodology to construct a novel nanoporous anode material (P-LVO@C), comprising Li1+x V1-x O2 nanocrystals embedded in a porous carbon matrix. The thermal decomposition of organic materials, including a triblock copolymer (P123) and citric acid, in a N2 atmosphere is the source of the nanoporous carbon in the porous composite material, while citric acid also plays a crucial role in maintaining the reductive environment of the synthetic medium. Due to the novel composition of Li1+x V1-x O2 (x ≥ 0.03), as well as its porous structure and well-integrated conductive framework, our P-LVO@C has great applicability as a high performance anode material for lithium-ion batteries. Our P-LVO@C composite electrode shows high reversible capacity with an excellent cycling performance (100 cycles) and good capacity retention (82%) at a higher rate (0.48C).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app