Add like
Add dislike
Add to saved papers

Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody.

Food Chemistry 2017 August 2
As an ideal biomimetic antibody, molecularly imprinted polymer (MIP) has shown great promise in immunoassays. Here, we developed a covalent imprinting method to prepare MIP artificial antibody towards clenbuterol on the well surface of a microtiter plate. Template molecule (clenbuterol) was splited by hydrolysis with functional monomer and removed by methanol/acetic acid solution, and then three-dimensional cavities were fabricated in the MIP, which can rebind template molecule via hydrogen bond interaction. Using this artificial antibody, we developed a novel biomimetic enzyme-linked immunosorbent assay (ELISA) with excellent sensitivity and specificity. The linear range for clenbuterol was 10(-5) to 1000μgL(-1), with a detection limit of 10(-7)μgL(-1). Cross reactivity of this MIP artificial antibody to other four structural analogs was less than 0.93%. This method was applied to determine clenbuterol in real samples with satisfactory result, suggesting a promising application of the biomimetic ELISA in food and environmental analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app