Add like
Add dislike
Add to saved papers

Improved Bioavailability of Encapsulated Bioactive Nutrients Delivered through Monoglyceride-Structured O/W Emulsions.

Effects of monoglyceride (MG) on the properties of WPI-stabilized emulsions and the bioavailability of encapsulated β-carotene were investigated. MG-structured emulsions showed reduced surface charge, higher viscosity, and better creaming stability than an emulsion without MG. Exposure of emulsions to GIT digestion led to significant changes in droplet size and interfacial properties. In vitro bioavailability of β-carotene in 1% MG (63.9%) and 2% MG (77.1%) structured emulsions were higher than that in emulsion without MG (53.4%) (p < 0.05). All MG emulsions demonstrated a better cellular uptake of β-carotene by Caco-2 cells than the emulsion without MG (p < 0.05). A significant increase in the cellular uptake of β-carotene with increasing MG content was observed, increasing from 0.109 μg/well for the 0.5% MG emulsion and up to 0.138 μg/well for 2% MG emulsion. The findings in this study confirm the potential of the MG-structured emulsions as novel carriers for lipophilic nutrients with improved stability and bioavailability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app