Add like
Add dislike
Add to saved papers

Pillararene-Based Aggregation-Induced-Emission-Active Supramolecular System for Simultaneous Detection and Removal of Mercury(II) in Water.

Supramolecular polymers are polymers based on monomeric units held together with directional and reversible noncovalent interactions. Compared with traditional polymers, they possess better processability and better recycling properties, owing to their reversible monomer-to-polymer transition. Herein, we report the construction of a new supramolecular system through self-assembly of a thymine-substituted copillar[5]arene 1 and a tetraphenylethylene (TPE) derivative 2 in the presence of Hg2+ . Copillar[5]arene 1 can coordinate with Hg2+ tightly through T-Hg2+ -T pairings. On the other hand, 1 can bind with guest molecule 2 through host-guest interactions between the pillararene cavity and the nitrile moiety of 2. These joint interactions generate crisscrossed networks composed of 1, 2, and Hg2+ , which eventually wrap into spherical nanoparticles. Due to the aggregation-induced emission (AIE) properties of 2, the formed supramolecular polymer exhibits strong fluorescence which renders convenient the detection of the Hg2+ -containing nanoparticles and the subsequent removal procedure. Furthermore, the polymer precipitate can be readily isolated by simple treatment, and the pseudorotaxane 2 ⊂ 1 can be recycled and reused. Our study has demonstrated a practical strategy for the sensing and removal of heavy metal ions in water by the construction of supramolecular polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app