COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis.

SCOPE: Dietary polyphenols have shown promise in protecting the liver against nonalcoholic fatty liver disease. The relative effectiveness and mechanisms of different polyphenols however is mostly unknown.

METHODS AND RESULTS: In a model of steatosis using HepG2 hepatocytes, we evaluated the protective effects of different classes of polyphenols and the contributing mechanisms. The treatment of the cells with oleic acid increased reactive oxygen species (ROS) generation and expression of tumor necrosis factor alpha (TNF-α), decreased expression of uncoupling protein 2, and decreased mitochondrial content and markers of biogenesis. The treatment with 1-10 μM polyphenols (resveratrol, quercetin, catechin, cyanidin, kuromanin, and berberine), as well as phenolic degradation products (caffeic acid, protocatechuic acid, and 2,4,6-trihydroxybenzaldehyde), all protected by more than 50% against the oleic acid induced increase in ROS. In other mechanisms involved, the polyphenols except anthocyanins strongly prevented or reversed the effect on mitochondrial content/biogenesis, increased expression of manganese superoxide dismutase, and prevented the large increase in TNF-α expression. Most polyphenols also prevented the decrease in uncoupling protein 2. The anthocyanins were unique in decreasing ROS generation without inducing mitochondrial biogenesis or manganese superoxide dismutase expression.

CONCLUSION: While different polyphenols similarly decreased cellular ROS in this model of steatosis, they differed in their ability to suppress TNF-α expression and induce mitochondrial biogenesis and content.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app