Add like
Add dislike
Add to saved papers

Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths.

Analytical Chemistry 2017 March 30
Hierarchically porous materials have become a key feature of biological materials and have been widely applied for adsorption or catalysis. Herein, we presented a new approach to directly prepare a phosphate-functionalized hierarchically porous hybrid monolith (HPHM), which simultaneously contained mesopores and macropores. The design was based on the copolymerization of polyhedral oligomeric vinylsilsesquioxanes (vinylPOSS) and vinylphosphonic acid (VPA) by adding degradable polycaprolactone (PCL) additive. The phosphate groups could be directly introduced into the hybrid monoliths. This approach was simple and time-saving, and overcame the defect of a rigorous, complex process for preparing traditional Ti(4+)-immobilized metal ion affinity chromatography (IMAC) materials. The specific surface area of an optimal hybrid monolith could reach 502 m(2)/g obtained by nitrogen adsorption/desorption measurements, which originated from the degradation of PCL. Meanwhile, the characterization of scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) also suggested that the macropores existed in the hybrid monoliths. The size of macropores could be controlled by the content of PCL in the polymerization mixture. The prepared Ti(4+)-IMAC HPHMs exhibited high adsorption capacity (63.6 mg/g for pyridocal 5'-phosphatemonohydrate), and excellent enrichment specificity (tryptic digest of β-casein/BSA at a molar ratio of 1:1000) and sensitivity (tryptic digest of 5 fmol of β-casein). Moreover, the Ti(4+)-IMAC HPHMs provided effective enrichment ability of low-abundance phosphopeptides from human serum and HeLa cell digests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app