Add like
Add dislike
Add to saved papers

The impact of the aortic valve impairment on the distant coronary arteries hemodynamics: a fluid-structure interaction study.

Atherosclerosis is still the leading cause of death in the developed world. Although its initiation and progression is a complex multifactorial process, it is well known that blood flow-induced wall shear stress (WSS) is an important factor involved in early atherosclerotic plaque initiation. In recent clinical studies, it was established that the regional pathologies of the aortic valve can be involved in the formation of atherosclerotic plaques. However, the impact of hemodynamic effects is not yet fully elucidated for disease initiation and progression. In this study, our developed 3D global fluid-structure interaction model of the aortic root incorporating coronary arteries is used to investigate the possible interaction between coronary arteries and aortic valve pathologies. The coronary hemodynamics was examined and quantified for different degrees of aortic stenosis varying from nonexistent to severe. For the simulated healthy model, the calculated WSS varied between 0.41 and 1.34 Pa which is in the atheroprotective range. However, for moderate and severe aortic stenoses, wide regions of the coronary structures, especially the proximal sections around the first bifurcation, were exposed to lower values of WSS and therefore they were prone to atherosclerosis even in the case of healthy coronary arteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app