Add like
Add dislike
Add to saved papers

Purification, Kinetic, and Thermodynamic Characteristics of an Exo-polygalacturonase from Penicillium notatum with Industrial Perspective.

An extracellular exo-polygalacturonase (exo-PG) produced by Penicillium notatum was purified (3.07-folds) by ammonium sulfate fractionation, ion exchange, and gel filtration chromatography. Two distinct isoforms of the enzyme, namely exo-PGI and exo-PGII, were identified during column purification with molecular weights of 85 and 20 kDa, respectively, on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme displayed its optimum activity at pH 6.0 and 50 °C and was found to be stable in the slightly acidic pH (ranging from 4.5 to 6.0). Michaelis-Menten parameters, i.e., Km (app) and Vmax for pectin hydrolysis, were calculated to be 16.6 mg/mL and 20 μmol/mL/min, respectively. The enzyme followed biphasic deactivation kinetics. Phase I of the exo-PGI showed half-lives of 6.83 and 2.39 min at 55 and 80 °C, respectively, whereas phase II of the enzyme exhibited a half-life of 63.57 and 22.72 min at 55 and 80 °C, respectively. The activation energy for denaturation was 51.66 and 44.06 kJ/mol for phase I and phase II of the exo-PGI, respectively. The enzyme activity was considerably enhanced by Mn2+ , whereas exposure to a hydrophobic environment (urea and sodium azide solution) drastically suppressed the enzyme activity. Results suggest that exo-PGI might be considered as a potential candidate for various applications, particularly in the food and textile industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app