Add like
Add dislike
Add to saved papers

The transient potassium outward current has different roles in modulating the pyloric and gastric mill rhythms in the stomatogastric ganglion.

The crustacean stomatogastric nervous system is a classic model for understanding the effects of modulating ionic currents and synapses at both the cell and network levels. The stomatogastric ganglion in this system contains two distinct central pattern generators: a slow gastric mill network that generates flexible rhythmic outputs (8-20 s) and is often silent, and a fast pyloric network that generates more consistent rhythmic outputs (0.5-2 s) and is always active in vitro. Different ionic conductances contribute to the properties of individual neurons and therefore to the overall dynamics of the pyloric and gastric mill networks. However, the contributions of ionic currents to different dynamics between the pyloric and gastric mill networks are not well understood. The goal of this study is to evaluate how changes in outward potassium current (I A) in the stomatogastric ganglion affect the dynamics of the pyloric and gastric mill rhythms by interfering with normal I A activity. We bath-applied the specific I A blocker 4-aminopyridine to reduce I A's effect in the stomatogastric ganglion in vitro and evaluated quantitatively the changes in both rhythms. We found that blocking I A in the stomatogastric ganglion alters the synchronization between pyloric neurons, and consistently activates the gastric mill rhythm in quiescent preparations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app