Add like
Add dislike
Add to saved papers

Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba.

Somatic embryogenesis is considered a convenient tool for investigating the regulating mechanisms of embryo formation; it is also a feasible system for in vitro regeneration procedures, with many advantages in woody species. Nevertheless, trees have shown recalcitrance to somatic embryogenesis, and its efficiency remains very low in many cases. Consequently, despite the clear potential of somatic embryogenesis in tree breeding programs, its application is limited since factors responsible for embryogenesis initiation have not yet been completely elucidated. In the present work, we investigated key cellular factors involved in the change of developmental program during leaf somatic embryogenesis initiation of white oak (Quercus alba), aiming to identify early markers of the process. The results revealed that pectin esterification, auxin accumulation and DNA demethylation were induced during embryogenesis initiation and differentially found in embryogenic cells, while they were not present in leaf cells before induction or in non-embryogenic cells after embryogenesis initiation. These three factors constitute early markers of leaf embryogenesis and represent processes that could be interconnected and involved in the regulation of cell reprogramming and embryogenesis initiation. These findings provide new insights into the mechanisms underlying plant cell reprogramming, totipotency and embryogenic competence acquisition, especially in tree species for which information is scarce, thus opening up the possibility of efficient manipulation of somatic embryogenesis induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app