JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of epithelial-mesenchymal transition afforded by activation of LOX-1/ TGF-β1/KLF6 signaling pathway in diabetic pulmonary fibrosis.

BACKGROUND AND OBJECTIVE: Diabetic pulmonary fibrosis is a severe disease that increases mortality risk of diabetes. However, the molecular mechanisms leading to pulmonary fibrosis in diabetes are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in streptozotocin (STZ)-induced rat pulmonary fibrosis.

METHODS: The rat model of diabetic pulmonary fibrosis was established by intraperitoneal injection of a single dose of STZ (35 mg/kg). Typical lesions of diabetic pulmonary fibrosis were observed 8 weeks after STZ injection by hematoxylin-eosin (HE) and Masson staining. Human bronchial epithelial cells (HBECs) and A549 cells were treated by high glucose. Gene or protein expression was measured by real-time PCR, Western blot, immunohistochemistry or immunofluorescence. The knockdown of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) or transforming growth factor-β1 (TGF-β1) was conducted by siRNA.

RESULTS: Activation of EMT was observed in lung tissues of STZ-induced diabetic rats, exhibiting a loss in the epithelial cell marker E-cadherin and an increase in the mesenchymal marker Vimentin. The protein and mRNA levels of LOX-1, TGF-β1 and krüppel-like factor 6 (KLF6) in the lung tissues were increased. Incubation of HBECs and A549 cells with high glucose activated EMT and induced an increase in LOX-1, TGF-β1 and KLF-6 expression. LOX-1 siRNA inhibited high glucose-induced EMT in HBECs and A549 cells, which correlated with the reduction of TGF-β1. TGF-β1 siRNA decreased the expression of LOX-1 and KLF6.

CONCLUSIONS: EMT was involved in the pathological process of diabetic pulmonary fibrosis, which was activated by LOX-1/TGF-β1/KLF6 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app