Add like
Add dislike
Add to saved papers

Effects of microRNA-146a on the proliferation and apoptosis of human osteoarthritis chondrocytes by targeting TRAF6 through the NF-κB signalling pathway.

Bioscience Reports 2017 April 31
The present study aims to investigate the effects of miR-146a on the proliferation and apoptosis of human osteoarthritis (OA) chondrocytes by targeting tumour necrosis factor receptor-associated factor 6 (TRAF6) through nuclear factor-κB (NF-κB) signalling pathway. Human normal and OA chondrocytes were selected and divided into the normal group, blank group, negative control (NC) group, miR-146a mimics group, miR-146a inhibitors, miR-146a inhibitor + si-TRAF6 group and si-TRAF6 group. Quantitative real-time PCR (qRT-PCR) was applied to detect the expressions of miR-146a , TRAF6 mRNA and NF-κB mRNA. Western blotting was used to detect the protein expressions of TRAF6 and NF-κB. CCK-8 assay and flow cytometry were used to detect cell proliferation and apoptosis. Compared with normal chondrocytes, the expression of miR-146a decreased, while the mRNA and protein expressions of TRAF6 and NF-κB increased in OA chondrocytes. OA chondrocytes had a lower proliferation rate and a higher apoptosis rate than the normal chondrocytes. Compared with the blank, NC and si-TRAF6 groups, the expression of miR-146a increased in the miR-146a mimics group, but decreased in the miR-146a inhibitors and miR-146a inhibitor + si-TRAF6 groups. Compared with the blank, NC and miR-146a inhibitor + si-TRAF6 groups, the mRNA and protein expressions of TRAF6 and NF-κB decreased, cell proliferation rate increased and cell apoptosis rate decreased in the miR-146a mimics and si-TRAF6 groups, while opposite trends were observed in the miR-146a inhibitors group. Our study suggests that miR-146a could promote proliferation and inhibit apoptosis of OA chondrocytes by inhibiting TRAF6 expression and suppressing the activation of NF-κB signalling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app