Add like
Add dislike
Add to saved papers

Comparative Analysis of a FRET-based PLK1 Kinase Assay to Identify PLK1 inhibitors for Chemotherapy.

Advanced techniques for detecting kinase inhibitors are in demand due to limitations of traditional approaches. Here, we used a fluorescence resonance energy transfer (FRET)-based kinase assay, a sensitive fluorescence turn-on biosensing platform, to identify a Polo-like kinase 1 (PLK1) inhibitor. The assay was developed with the Z'-Lyte™ FRET-peptide and PLK1 kinase purified from a baculovirus expression system. Using PLK1 inhibitors, sensitivity and efficiency of this FRET-based PLK1 kinase assay were compared to those of radioisotope-based and immunoblot-based assays. Although the inhibitory activity of BI 2536 against PLK1 kinase in each assay was almost the same, the FRET-based PLK1 kinase assay was much easier, faster, safer, and more convenient than a radioisotope-based assay or an immunoblot-based traditional kinase assay. From our findings, we suggest that a FRET-based PLK1 kinase assay is an advanced tool which overcomes the limitations of previous traditional kinase assays to detect kinase inhibitors for the development of anticancer drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app