Add like
Add dislike
Add to saved papers

In Vitro Assay Development and HTS of Small-Molecule Human ABAD/17β-HSD10 Inhibitors as Therapeutics in Alzheimer's Disease.

SLAS Discovery 2017 July
A major hallmark of Alzheimer's disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-β peptide (Aβ). Aβ has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aβ-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app