Add like
Add dislike
Add to saved papers

Pathways for Excited-State Nonradiative Decay of 5,6-Dihydroxyindole, a Building Block of Eumelanin.

The photophysics of 5,6-dihydroxyindole (DHI) following excitation to its lowest two optically bright states was investigated using the complete active space self-consistent field method with second-order perturbative energy corrections. There is a barrierless pathway for the molecule to relax from the second-lowest bright state (21 ππ*) to the lowest bright state (11 ππ*). The 11 ππ* state has a conical intersection with the optically dark 11 πσ* state, which further intersects with the ground state along the NH and OH stretching coordinates. Moreover, the 11 ππ* has out-of-plane conical intersections with the ground state. For accessing the conical intersections with the ground state, there are energy barriers, which are higher than the available energy following vertical excitation to the lowest bright state. The nature of the calculated deactivation pathways helps interpret the experimentally estimated lifetimes of the lowest two bright states of DHI. The relatively long lifetime of the lowest excited state suggests that isolated DHI in monomeric form cannot rationalize the ultrafast deactivation property of eumelanin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app