Add like
Add dislike
Add to saved papers

Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae).

Oecologia 1995 May
The onset of larval diapause in the burnet moth Zygaena trifolii is clearly characterized by the larva molting into a specialized dormant morph. In a potentially bivoltine Mediterranean population (Marseille) two types of diapause can occur within 1 year: firstly, a facultative summer diapause of 3-10 weeks, and secondly, an obligate winter diapause, which can be lengthened by a period of thermal quiescence to several months in temperatures of ≤5°C. For the first time, three successive physiological periods have been experimentally distinguished within an insect dormancy (between onset of diapause and molting to the next non-diapause stage), using chilling periods of 30-180 days at 5°C, and varying conditions of photoperiod and temperature. These stages are: (1) a continuous Diapause-ending process (DEP); (2) thermal quiescence (Q); and finally, (3) a period of postdiapause development (PDD) before molting to the next larval instar. The result of transferring dormant larvae from chilling at 5°C to 20°C depended on the length of the chilling period. After chilling for 120-180 days, molting to the next instar occurred after 6-10 days, independent of daylength. This period corresponds with the duration of PDD. After shorter chilling periods (90, 60, 30 days and the control, 0 days) the period to eclosion increased exponentially, and included both the latter part of the previous diapause process and the 6-10 day period of PDD. However, photoperiod also influences the time to eclosion after chilling. Short daylength (8 h light / 16 h dark: LD 8/16) lengthened the diapause in comparison to long daylength (16 h light / 8 h dark: LD 16/8). Short daylength had a similar effect during chilling at 5°C, as measured by the longer time to eclosion after transfer. The shorter time to eclosion resulting from longer chilling periods (30-90 days) demonstrates that the state of diapause is continuously shortened at 5°C, and corresponds to the neuroendocrine controlled DEP. Presumably the DEP has already started after the onset of diapause. When chilling was continued after the end of the DEP, which ranged between 90 and 120 days, thermal quiescence (Q) followed (observed maximum 395 days). Different photoperiodic conditions during the pre-diapause inductive period modified diapause intensity (measured as the duration of diapause), in that a photoperiodic signal just below the critical photoperiod for diapause induction (LD 15/9) intensified diapause. Experiments simulating the summer diapause showed that PDD occurred in the range of 10-25°C. Higher temperatures (15 and 20°C) shortened the DEP at LD 16/8, so that at 20°C many individuals had already terminated diapause after 10-40 days and had molted after the 6-10 days of PDD. A temperature of 25°C unexpectedly lengthened the DEP to 110 days in several individuals. The ecological consequences and the adaptive significance of variation in the duration of the diapause are discussed in relation to the persistence of local populations predictably variable and rare climatic extremes throughout the year.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app