Add like
Add dislike
Add to saved papers

Excitons in topological Kondo insulators: Theory of thermodynamic and transport anomalies in SmB_{6}.

Kondo insulating materials lie outside the usual dichotomy of weakly versus correlated-band versus Mott-insulators. They are metallic at high temperatures but resemble band insulators at low temperatures because of the opening of an interaction-induced band gap. The first discovered Kondo insulator (KI) SmB_{6} has been predicted to form a topological KI (TKI). However, since its discovery thermodynamic and transport anomalies have been observed that have defied a theoretical explanation. Enigmatic signatures of collective modes inside the charge gap are seen in specific heat, thermal transport, and quantum oscillation experiments in strong magnetic fields. Here, we show that TKIs are susceptible to the formation of excitons and magnetoexcitons. These charge neutral composite particles can account for long-standing anomalies in SmB_{6}.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app