JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments.

Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag+ through dissolution of AgNPs is one mechanism leading to toxic effects in sediments. We applied an ultrasound-assisted sequential extraction method to evaluate the dissolution of AgNPs and to study the partitioning of dissolved Ag in sediments. Silver was spiked into artificial and 2 natural sediments (Lake Höytiäinen sediment and Lake Kuorinka sediment) as silver nitrate (AgNO3 ), uncoated AgNPs, or polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). In addition, the total body burdens of Ag in the sediment-dwelling oligochaete Lumbriculus variegatus were assessed over a 28-d exposure period. The dissolution rate was found to be similar between the uncoated AgNP and PVP-AgNP groups. In all sediments, dissolved Ag was mainly bound to the residual fraction of the sediment, followed by iron and manganese oxides or natural organic matter. In Lake Kuorinka sediment, dissolved Ag that originated from PVP-AgNPs was relatively more bioaccessible, also resulting in higher total body burden in L. variegatus than that from uncoated AgNPs or AgNO3 . In artificial sediment and Lake Höytiäinen sediment, AgNO3 was significantly more bioaccessible than AgNPs. Our results highlight the importance of sediment properties and AgNP surface chemistry when evaluating the environmental exposure of AgNPs. Environ Toxicol Chem 2017;36:2593-2601. © 2017 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app