Add like
Add dislike
Add to saved papers

Baf60b-mediated ATM-p53 activation blocks cell identity conversion by sensing chromatin opening.

Cell Research 2017 May
Lineage conversion by expression of lineage-specific transcription factors is a process of epigenetic remodeling that has low efficiency. The mechanism by which a cell resists lineage conversion is largely unknown. Using hepatic-specific transcription factors Foxa3, Hnf1α and Gata4 (3TF) to induce hepatic conversion in mouse fibroblasts, we showed that 3TF induced strong activation of the ATM-p53 pathway, which led to proliferation arrest and cell death, and it further prevented hepatic conversion. Notably, ATM activation, independent of DNA damage, responded to chromatin opening during hepatic conversion. By characterizing the early molecular events during hepatic conversion, we found that Baf60b, a member of the SWI/SNF chromatin remodeling complex, links chromatin opening to ATM activation by facilitating ATM recruitment to the open chromatin regions of a panel of hepatic gene loci. These findings shed light on cellular responses to lineage conversion by revealing a function of the ATM-p53 pathway in sensing chromatin opening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app