Journal Article
Review
Add like
Add dislike
Add to saved papers

Molecular typing of Chlamydia trachomatis: An overview.

Urogenital infection due to Chlamydia trachomatis (CT) is one of the most common bacterial sexually transmitted infections (STIs) and is a major public health problem worldwide. Molecular characterisation of CT is important for understanding the pathophysiological mechanisms of chlamydial disease and its transmission dynamics in sexual networks. Traditionally, strain typing of CT was based on serotyping methods characterising the major outer membrane protein (MOMP). With the advent of polymerase chain reaction and sequencing the era of molecular typing began. Molecular characterization of CT strains is based on sequence analysis of ompA gene encoding MOMP. However, in due course of time, improvements were made to enhance the discriminatory power of sequencing and quality of epidemiological information. New high-resolution genotyping methods using multiple loci such as multilocus sequence typing (MLST) and multiple loci variable number of tandem repeats (MLVA) were developed but were unable to differentiate mixed infections (MIs). The development of DNA-hybridisation methods emerged as a major breakthrough in detecting MIs. Although MLST and MLVA are more discriminative than other genotyping methods, they are laborious and expensive. DNA microarray technique is an affordable alternative for genotyping. Since recombination is widespread in the CT genome, ompA is not a reliable marker for phylogenetic studies; hence, whole genome sequencing may provide maximum phylogenetic resolution of CT strains. A descriptive review is provided of the various molecular CT typing methods. The vital information gained can be used for formulating screening programmes, targeted prevention and optimising therapeutic measures aiming to reduce disease transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app