COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of different γ-subunit isoforms on the regulation of AMPK.

AMP-activated protein kinase (AMPK) plays a key role in integrating metabolic pathways in response to energy demand. AMPK activation results in a wide range of downstream responses, many of which are associated with improved metabolic outcome, making AMPK an attractive target for the treatment of metabolic diseases. AMPK is a heterotrimeric complex consisting of a catalytic subunit (α) and two regulatory subunits (β and γ). The γ-subunit harbours the nucleotide-binding sites and plays an important role in AMPK regulation in response to cellular energy levels. In mammals, there are three isoforms of the γ-subunit and these respond differently to regulation by nucleotides, but there is limited information regarding their role in activation by small molecules. Here, we determined the effect of different γ-isoforms on AMPK by a direct activator, 991. In cells, 991 led to a greater activation of γ2-containing AMPK complexes compared with either γ1 or γ3. This effect was dependent on the long N-terminal region of the γ2-isoform. We were able to rule out an effect of Ser108 phosphorylation, since mutation of Ser108 to alanine in the β2-isoform had no effect on activation of AMPK by 991 in either γ1- or γ2-complexes. The rate of dephosphorylation of Thr172 was slower for γ2- compared with γ1-complexes, both in the absence and presence of 991. Our studies show that activation of AMPK by 991 depends on the nature of the γ-isoform. This finding may have implications for the design of isoform-selective AMPK activators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app