JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protective effects of Garcinol against neuropathic pain - Evidence from in vivo and in vitro studies.

Neuroscience Letters 2017 April 25
Neuroinflammatory processes have a vital role in the pathogenesis of neuropathic pain. Garcinol, harvested from Garcinia indica, is known to exert potent anti-inflammatory properties. Recent studies have indicated that Garcinol may inhibit activation of nuclear factor-κB (NF-κB) by inhibiting NF-κB/p65 acetylation. These findings prompted us to evaluate the protective effects of Garcinol in the lumbar fifth spinal nerve ligation (SNL)-induced rat model of neuropathic pain and Lipopolysaccharide(LPS)-stimulated primary cultured microglia. In the present study, we found that intrathecal administration of Garcinol significantly attenuated SNL-induced nociceptive behaviors. Garcinol suppressed microglial activation as well as the expression of interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS)/nitric oxide (NO), and cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) in the spinal cord of SNL rats. It also reduced the nuclear translocation of NF-κB by decreasing acetyl-p65 protein expression. Similarly, in the in vitro study, Garcinol decreased the production of NO/iNOS, PGE2/COX-2, and proinflammatory cytokines in LPS-exposed microglia. Likewise, Garcinol inhibited the NF-κB signaling pathway by downregulating acetyl-p65 levels in LPS-challenged microglia. Our findings suggest that Garcinol may have protective effects against neuropathic pain that are associated with the inhibition of neuroinflammation in microglia. Therefore, Garcinol could be a promising agent in the treatment of neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app