Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Binding mode analyses of NAP derivatives as mu opioid receptor selective ligands through docking studies and molecular dynamics simulation.

Mu opioid receptor selective antagonists are highly desirable because of their utility as pharmacological probes for receptor characterization and functional studies. Furthermore, the mu opioid receptors act as an important target in drug abuse and addiction treatment. Previously, we reported NAP as a novel lead compound with high selectivity and affinity towards the mu opioid receptor. Based on NAP, we have synthesized its derivatives and further characterized their binding affinities and selectivity towards the receptor. NMP and NGP were identified as the two most selective MOR ligands among NAP derivatives. In the present study, molecular modeling methods were applied to assess the dual binding modes of NAP derivatives, particularly on NMP and NGP, in three opioid receptors, in order to analyze the effects of structural modifications on the pyridyl ring of NAP on the binding affinity and selectivity. The results indicated that the steric hindrance, electrostatic, and hydrophobic effects caused by the substituents on the pyridyl ring of NAP contributed complimentarily on the binding affinity and selectivity of NAP derivatives to three opioid receptors. Analyses of these contributions provided insights on future design of more potent and selective mu opioid receptor ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app