Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A restriction-free method for gene reconstitution using two single-primer PCRs in parallel to generate compatible cohesive ends.

BMC Biotechnology 2017 March 18
BACKGROUND: Restriction-free (RF) cloning, a PCR-based method for the creation of custom DNA plasmids, allows for the insertion of any sequence into any plasmid vector at any desired position, independent of restriction sites and/or ligation. Here, we describe a simple and fast method for performing gene reconstitution by modified RF cloning.

RESULTS: Double-stranded inserts and acceptors were first amplified by regular PCR. The amplified fragments were then used as the templates in two separate linear amplification reactions containing either forward or reverse primer to generate two single-strand reverse-complement counterparts, which could anneal to each other. The annealed inserts and acceptors with 5' and 3' cohesive ends were sealed by ligation reaction. Using this method, we made 46 constructs containing insertions of up to 20 kb. The average cloning efficiency was higher than 85%, as confirmed by colony PCR and sequencing of the inserts.

CONCLUSIONS: Our method provides an alternative cloning method capable of inserting any DNA fragment of up to at least 20 kb into a plasmid, with high efficiency. This new method does not require restriction sites or alterations of the plasmid or the gene of interest, or additional treatments. The simplicity of both primer design and the procedure itself makes the method suitable for high-throughput cloning and structural genomics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app