Add like
Add dislike
Add to saved papers

Glucose-Triggered Insulin Release from Fe 3+ -Cross-linked Alginate Hydrogel: Experimental Study and Theoretical Modeling.

We study the mechanisms involved in the release, triggered by the application of glucose, of insulin entrapped in Fe3+ -cross-linked alginate hydrogel particles further stabilized with a polyelectrolyte. Platelet-shaped alginate particles are synthesized containing enzyme glucose oxidase conjugated with silica nanoparticles, which are also entrapped in the hydrogel. Glucose diffuses in from solution, and production of hydrogen peroxide is catalyzed by the enzyme within the hydrogel. We argue that, specifically for the Fe3+ -cross-linked systems, the produced hydrogen peroxide is further converted to free radicals via a Fenton-type reaction catalyzed by the iron cations. The activity of free radicals, as well as the reduction of Fe3+ by the enzyme, and other mechanisms contribute to the decrease in density of the hydrogel. As a result, while the particles remain intact, void sizes increase and release of insulin ensues and is followed experimentally. A theoretical description of the involved processes is proposed and utilized to fit the data. It is then used to study the long-time properties of the release process that offers a model for designing new drug-release systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app