JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Conjugation of a Dipicolyl Chelate to Polypeptide Conjugates Increases Binding Affinities for Human Serum Albumin and Survival Times in Human Serum.

The affinity for human serum albumin (HSA) of a series of 2-5 kDa peptides covalently linked to 3,5-bis[[bis(2-pyridylmethyl)amino]methyl]benzoic acid, a dipicolyl chelator with micromolar affinity for Zn2+ , was found by surface plasmon resonance to increase in the presence of 1 μm ZnCl2 at physiological pH. The dependence on polypeptide hydrophobicity was found to be minor, thus suggesting that the conjugates bound to the metal-binding site and not to the fatty-acid-binding site. The affinity of the conjugates increased strongly with the positive charge of the polypeptides, thus implicating the negatively charged protein surface surrounding the metal-binding site. The survival times of the peptides in human serum were extended as a consequence of stronger binding to HSA, thus suggesting that Zn2+ -chelating agents might provide a general route to increased survival time of peptides in serum in therapeutic and diagnostic applications without significantly increasing their molecular weights.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app