Add like
Add dislike
Add to saved papers

The effects of substance P and acetylcholine on human tenocyte proliferation converge mechanistically via TGF-β1.

Previous in vitro studies on human tendon cells (tenocytes) have demonstrated that the exogenous administration of substance P (SP) and acetylcholine (ACh) independently result in tenocyte proliferation, which is a prominent feature of tendinosis. Interestingly, the possible link between SP and ACh has not yet been explored in human tenocytes. Recent studies in other cell types demonstrate that both SP and ACh independently upregulate TGF-β1 expression via their respective receptors, the neurokinin 1 receptor (NK-1R) and muscarinic ACh receptors (mAChRs). Furthermore, TGF-β1 has been shown to downregulate NK-1R expression in human keratocytes. The aim of this study was to examine if TGF-β1 is the intermediary player involved in mediating the proliferative pathway shared by SP and ACh in human tenocytes. The results showed that exogenous administration of SP and ACh both caused significant upregulation of TGF-β1 at the mRNA and protein levels. Exposing cells to TGF-β1 resulted in increased cell viability of tenocytes, which was blocked in the presence of the TGFβRI/II kinase inhibitor. In addition, the proliferative effects of SP and ACh on tenocytes were reduced by the TGFβRI/II kinase inhibitor; this supports the hypothesis that the proliferative effects of these signal substances are mediated via the TGF-β axis. Furthermore, exogenous TGF-β1 downregulated NK-1R and mAChRs expression at both the mRNA and protein levels, and these effects were negated by simultaneous exposure to the TGFβRI/II kinase inhibitor, suggesting a negative feedback loop. In conclusion, the results indicate that TGF-β1 is the intermediary player through which the proliferative actions of both SP and ACh converge mechanistically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app