EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system.

AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run-time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater® phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi-spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid-range depth of multi-energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app