Add like
Add dislike
Add to saved papers

Unique interconnected graphene/SnO 2 nanoparticle spherical multilayers for lithium-ion battery applications.

Nanoscale 2017 March 31
We have designed and synthesized a unique structured graphene/SnO2 composite, where SnO2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g-1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app