Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Changes of Cytoskeletal Proteins Induced by the Fast Effect of Estrogen in Mouse Blastocysts and Its Roles in Implantation.

Reproductive Sciences 2017 December
It is necessary for estrogen to activate mouse blastocysts, so that they can attach to endometrial epithelium in implantation and in our previous research, we have proved estrogen can induce a fast increase in intracellular calcium of mouse blastocysts through acting on G protein-coupled receptor 30 (GPR30), which further promotes their implantation. Moreover, there has been evidence that cytoskeletal proteins are involved in integrin-mediated adhesion of many kinds of cells, which also plays an important role in implantation. To prove estrogen induces rapidly the changes of cytoskeletal proteins in mouse blastocysts and its roles in implantation, we first used immunofluorescence staining and laser confocal microscopy to investigate the fast effect of estrogen on the expression and localization of cytoskeletal proteins in mouse blastocysts. Second, we used electroporation associated with RNA interference to knock down one of the important cytoskeletal proteins, talin, in the mouse blastocyst cells to investigate the fast effect of estrogen on the localization of integrins and the binding activity of integrins with their ligand fibronectin (FN). At last, mouse blastocysts with different treatments were cultured with FN or uterine epithelial cell line Ishikawa in vitro, respectively, and transferred into the bilateral uterine horns of recipient mice, to study the role of the fast effect of estrogen on cytoskeletal proteins in blastocysts adhesion and implantation. Our results indicated that estradiol (E2 ), E2 conjugated with bovine serum album (E2 -BSA) and G-1 (a GPR30-specific agonist) could induce cytoskeletal protein talin, vinculin, and actin to cluster in the mouse blastocysts, while G15 (a GPR30-specific antagonist) and BAPTA (a calcium chelator) may block this effect induced by E2 -BSA. Furthermore, E2 -BSA could induce the clustering and relocalization of integrin β1 and β3 and increase the FN-binding activity of integrins in blastocyst cells, while E2 -BSA could not induce these effects in the blastocysts pretreated with talin-small interfering RNA (siRNA). Meanwhile, the adhesion rate and implantation rate of blastocysts pretreated with talin-siRNA were significantly lower than those pretreated with control-siRNA. We provided the first evidence that the fast effect of estrogen might cause the clustering of the cytoskeletal proteins in mouse blastocyst cells and further induce the changes of localization and functional activity of integrins in the blastocyst cells, which play important roles in blastocyst implantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app