Add like
Add dislike
Add to saved papers

Dickkopf 3 attenuates xanthine dehydrogenase expression to prevent oxidative stress-induced apoptosis.

Dickkopf (DKK) 3 is a DKK glycoprotein family member that controls cell fate during embryogenesis and exerts opposing effects on survival in a cell type-dependent manner; however, the mechanisms governing its pro-apoptosis versus pro-survival functions remain unclear. Here, we investigated DKK3 function in Li21 hepatoma cells and tPH5CH immortalized hepatocytes. DKK3 knockdown by siRNA resulted in reactive oxygen species accumulation and subsequent apoptosis, which were abrogated by administration of the antioxidant N-acetyl-cysteine. Moreover, forced DKK3 over-expression induced resistance to hydrogen peroxide (H2 O2 )-induced apoptosis. Expression analysis by cDNA microarray showed that xanthine dehydrogenase (XDH) expression was significantly lower in Li21 and tPH5CHDKK3-over-expressing cells in response to H2 O2 treatment when compared to that in their respective mock-transfected controls, whereas a marked increase was observed in H2 O2 -treated DKK3 knockdown cells. Thus, these data suggest that DKK3 promotes cell survival during oxidative stress by suppressing the expression of the superoxide-producing enzyme XDH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app