JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Monitoring the Cellular Binding Events with Quartz Crystal Microbalance (QCM) Biosensors.

Quartz crystal microbalance (QCM) biosensors have been demonstrated as noninvasive and label-free tools for cell based measurements. However, the complexity of biofilms composed of cells with the associated liquid environments is preventive towards forming explicit relationship between the added mass and the change in the frequency output signal. Therefore, the protocols of interface design (surface chemistry, interaction mechanism, and data acquisition), data interpretation, and device fabrication, all need to be finely refined in order to make these biosensors prevail in real life. Especially in the sense of deriving correct inferences from binding events, the fluidic effects (mostly visible in the form of damping resistance of QCM) should be quantitatively excluded from binding measurements. Such strategies can then track even the cellular interactions which are the basis of many physiological functions of life and can be built into smart functional devices for point of care diagnostics. This chapter provides technical details regarding these strategies with a focus on experimental details and procedures of the measurements of anti CD-20 antibody (Rituximab) interactions with B-Lymphoma cancer cells using the QCM method. In addition to a detailed description of specific interactions, we provide mechanisms of data interpretation and device development having potential application to other techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app